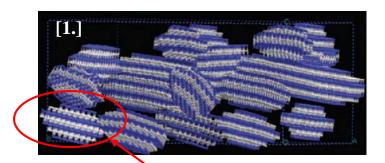
Neutron diffraction measurements for thermo-mechanical modeling of TATB-based explosives

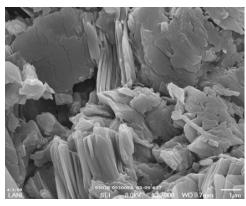
LANSCE User Group Meeting November 2-3, 2015

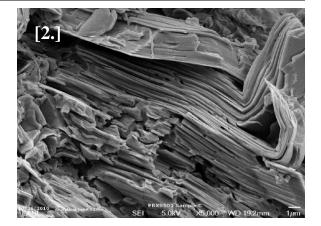
D. J. Luscher

Fluid Dynamics and Solid Mechanics Group (T-3) Theoretical Division Los Alamos National Laboratory

Co-contributors: J. Yeager (M-9), S. Vogel, B. Clausen, D. Brown (MST-8)




1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) and PBX-9502

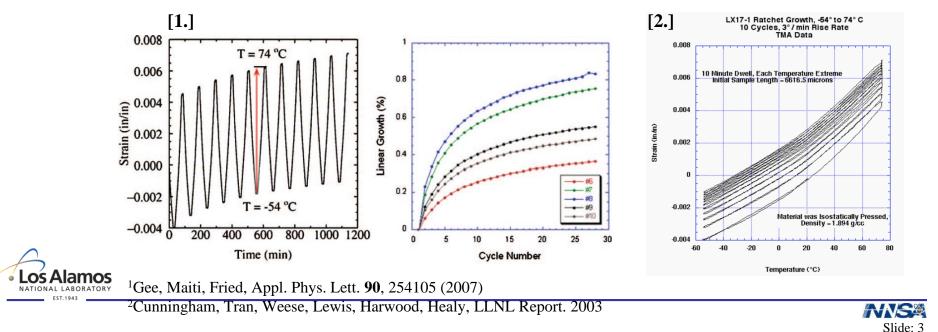

PBX is heterogeneous at micron scale:

- Anisotropic single crystals pushing/pulling each other
- Void structure interacting with stress field
- Preferred alignment of crystals causes bulk anisotropy

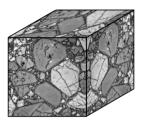
Polycrystal explosives aggregate

single crystal

¹Maiti, Gee, Hoffman, Fried, J. App. Phys. **103** 053504 2008 ²Schwarz, Brown, Thompson, Olinger, Furmansky, Cady, Prop. Exp., and Pyro. 2013


Macroscale: Continuum models for thermal deformation of HE

Ratchet growth observed in PBX 9502


- An irreversible strain accumulates with temperature cycling
- Not exhibited by single crystals of TATB
- Mechanism is interaction of crystals with thermo-elastic mismatch
- Anisotropy, orientation distribution, and residual strain after pressing are key

Micromechanical modeling of this thermo-mechanical response:

- Geometric theory for realignment of (001) during consolidation
- Self-consistent homogenization of thermo-mechanical response

Modeling texture evolution due to pressing

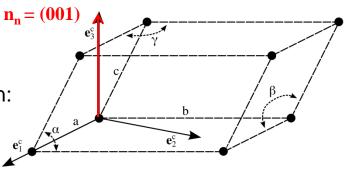
March Theory (1932):

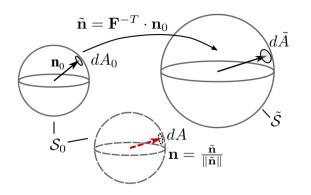
- High-aspect-ratio crystals are rearranged according to deformation of consolidation process
- Platelet basal normal co-vector convects with deformation:
 - $\mathbf{n} = \mathbf{F}^{-T} \cdot \mathbf{n}_{o}$

Analytical solutions for idealized cases:

Generalized March Theory:

$$\mathbf{n} = \sin\theta\cos\phi\mathbf{e}_{1} + \sin\theta\sin\phi\mathbf{e}_{2} + \cos\theta\mathbf{e}_{3}$$
$$R^{2}(\theta,\phi) = \frac{\tilde{\mathbf{n}}\cdot\tilde{\mathbf{n}}}{\mathbf{n}_{o}\cdot\mathbf{n}_{o}} = \left[\mathbf{n}\cdot\left(\mathbf{F}\mathbf{F}^{T}\right)\cdot\mathbf{n}\right]^{-1}$$
$$M(\theta,\phi) = \frac{cN}{dA} = \frac{dA_{o}}{dA}M_{o} = M_{o}\det\mathbf{F}R(\theta,\phi)^{3}$$

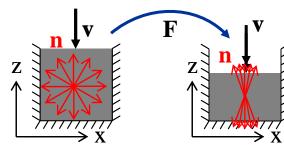

• "Isostatic" i.e. volumetric consolidation:

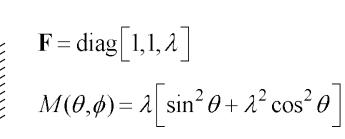

$$\mathbf{F} = \lambda \mathbf{I} \quad \tilde{\mathbf{n}} = \lambda^{-1} \mathbf{n}_{o} \quad R^{3} = \lambda^{-3} = \frac{1}{\det \mathbf{F}} \quad M(\theta, \phi) = M_{o}(\theta_{o}, \phi_{o})$$

Uniform distribution "in" → no texture

• Uniaxial "die-pressed":

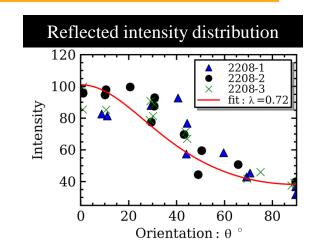
$$\mathbf{F} = \operatorname{diag}[1, 1, \lambda] \qquad M(\theta, \phi) = \lambda \left[\sin^2 \theta + \lambda^2 \cos^2 \theta\right]$$



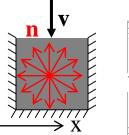


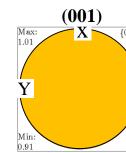
Modeling texture evolution due to pressing

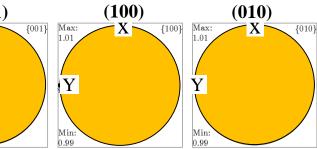
• Uniaxial "die-pressed":

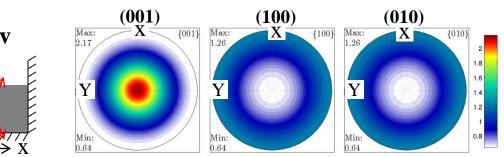


0.98

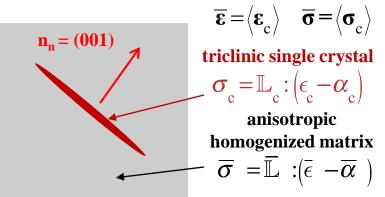

0.96 0.94

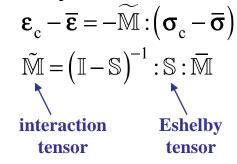

0.92

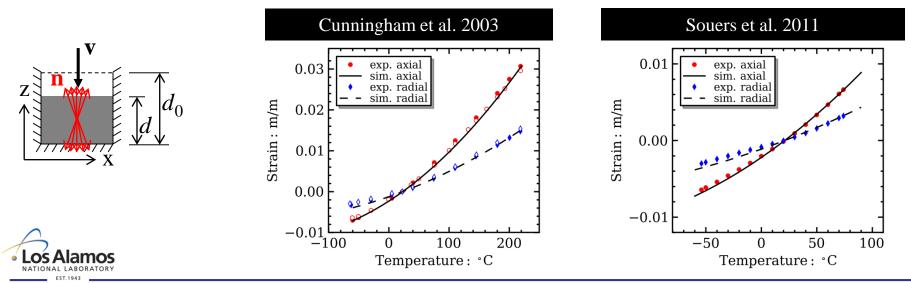




Final


177 1990


Uniaxial mechanically pressed, texture and thermal expansion


Polycrystal Averages: $\overline{\epsilon} = \int_{V} \varepsilon(\mathbf{x}) dV = \langle \varepsilon(\mathbf{x}) \rangle \quad \overline{\sigma} = \int_{V} \sigma(\mathbf{x}) dV = \langle \sigma(\mathbf{x}) \rangle$

Self-Consistent Homogenization:

Eshelby interaction relations:

³Luscher, Buechler, Miller (2013) Mod. Sim. Mat. Sci. and Eng. 22 (7)

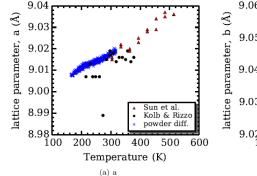
Two Types of Experiments

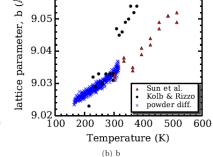
(1) Evolution of strain fields during thermal cycling of TATB

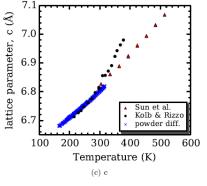
- Thermally cycle TATB powder and neat-pressed pellet
- Cycle temperatures from -55C to 80C (4-5 cycles)
- Use HIPPO to collect neutron scattering data (every 5C)
- Process diffraction patterns to infer residual stress field evolution during thermal cycles
 - "pellet strain powder strain = residual strain from pressing"

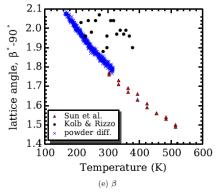
(2) Evolution of texture during pressing of TATB pellets

- Begin with loose d-TATB powder inside a cylindrical die
- Use load frame and SMARTS to measure neutron diffraction patterns during pressing to characterize texture with high temporal resolution
- Use HIPPO at initial and final states to fully characterize ODF with higher orientation resolution




For more details concerning experiment and results - see poster by Yeager et al.



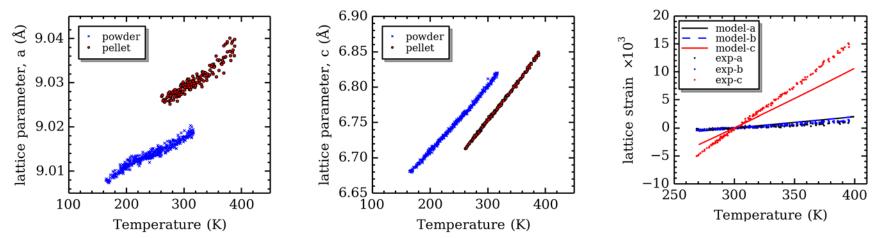

Experiment 1 – thermal cycling

TATB powder diffraction results:

Reference	CTE - a	CTE - b	CTE - c	Note
Kolb & Rizzo	8.26	20.9	248	X-ray single-xtal
Sun et al.	11.3	10.4	167	X-ray powder
This work	9.1	8.9	164	Neutron powder
Sewell	11	11	170	Monte Carlo
Gee et al.	24.6	24.9	134	Mol. Dyn.

CTE units: x 10⁻⁶ K⁻¹

Observations


LOS Alamos

- lattice parameter measurements consistent with Cady et al. for RT
- thermal expansion closer to that measured by Sun et al.

Experiment 1 – thermal cycling

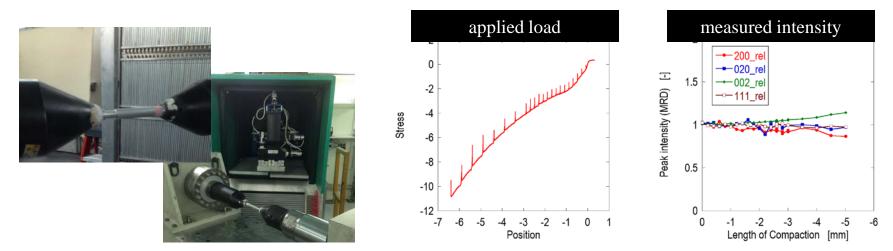
Die-pressed TATB pellet diffraction results:

Observations

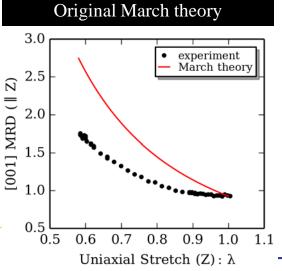
- c-lattice direction compressed, a and b slightly expanded
- overall unit-cell volume smaller in pressed pellet

Inferences

- compressive traction normal to (001) that increases with temperature
- need to include intergranular sliding within model to better represent insitu thermal deformation

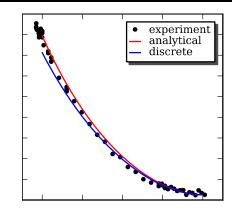

For more details concerning experiment and results - see poster by Yeager et al.

⁴Yeager, Luscher, Vogel, Clausen, Brown (in review)



Experiment 2 – compaction of powder to pellet

SMARTS in-situ diffraction during compaction:


Comparison with theory guides improvement to models:

Extension of theory:

- Original March theory used in geomechanics
- Does not account for significant reduction of porosity (def. voids)
- Modified theory to account for early deformation of void space

Extended theory

Summary

Two experiments:

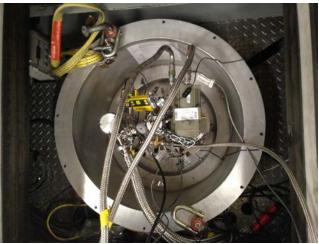
- (1) Evolution of strain fields during thermal cycling of TATB
- (2) Evolution of texture and elastic anisotropy during pressing of TATB pellets

Main Message:

- Modeling the thermal deformation (expansion) of PBX-9502 is important to weapon system analyses:
 - Normal thermal and mechanical environments
- Modeling this behavior correctly demands a quantitative understanding of
 - (A) the evolving distribution of internal (residual) strains during thermal cycling
 - (B) texture evolution during consolidation (pressing) operations.
- These experiments 1 and 2 are, respectively, the most effective and immediately attainable manner of delivering (A) and (B) above.

These and future experiments will deliver results that are being used for development and validation of models critical to *DSW*.

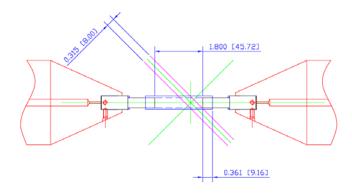
Experiment 1 – thermal cycling

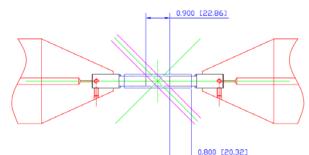

Needed to load in V cans in He atmosphere

- Glove bag
- Copper "thermocouple"
- Powder and pellet

In-situ neutron scattering at HIPPO at Lujan Center during thermal cycling

- Helium cooling with a compressor
- Heating of V can to counteract cooling and control the temperature
- Thermocouples and pressure monitors

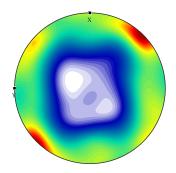


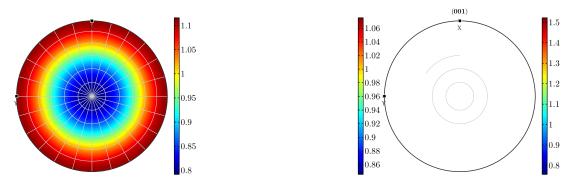

Experiment 2 – compaction of powder to pellet

Design considerations for die


- Desired compaction level of neat TATB and the required stress on the part
 - Estimated we could achieve 95% compaction using high strength aluminum die

Die loaded with 1.74 g d-TATB Instron load frame used to compress plunger from one side




Experiment 2 – compaction of powder to pellet

Ex-situ (HIPPO) diffraction results:

Texture evolution model:

Observations

- preferred orientation of (001) generally aligned with pressing direction (PD)
- approximately symmetric distribution of (100) and (010) poles about PD

Alamos model capture this behavior reasonable well with slight overprediction

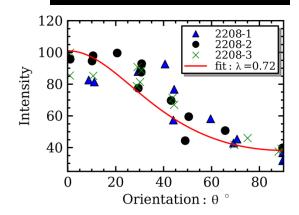
Modeling texture evolution due to pressing

Analytical solutions for specific cases:

Generalized March Theory:

Uniaxial "die-pressed":

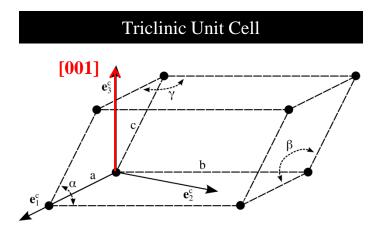
$$\mathbf{n} = \sin\theta\cos\phi\mathbf{e}_{1} + \sin\theta\sin\phi\mathbf{e}_{2} + \cos\theta\mathbf{e}_{3}$$
$$R^{2}(\theta,\phi) = \frac{\tilde{\mathbf{n}}\cdot\tilde{\mathbf{n}}}{\mathbf{n}_{o}\cdot\mathbf{n}_{o}} = \left[\mathbf{n}\cdot\left(\mathbf{F}\mathbf{F}^{T}\right)\cdot\mathbf{n}\right]^{-1}$$
$$M(\theta,\phi) = \frac{cN}{dA} = \frac{dA_{o}}{dA}M_{o} = M_{o}\det\mathbf{F}R(\theta,\phi)^{3}$$

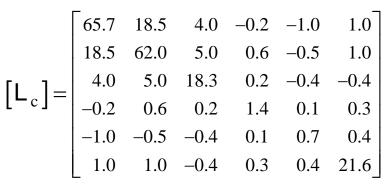

• "Isostatic" i.e. volumetric consolidation:

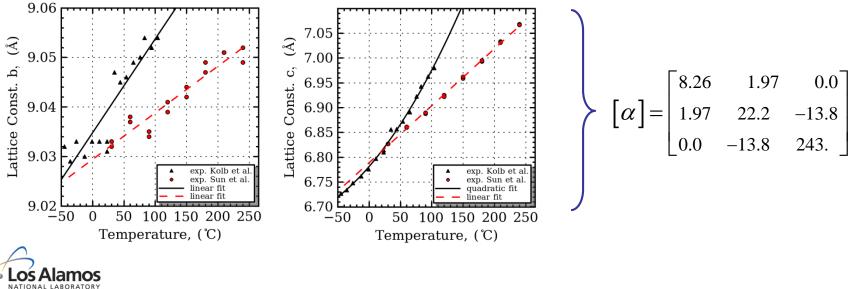
$$\mathbf{F} = \lambda \mathbf{I} \quad \tilde{\mathbf{n}} = \lambda^{-1} \mathbf{n}_{o} \qquad R^{3} = \lambda^{-3} = \frac{1}{\det \mathbf{F}}$$

$$M(\theta, \phi) = M_{o}(\theta_{o}, \phi_{o})$$

$$Uniform distribution
"in" \rightarrow no texture$$


 $\mathbf{F} = \operatorname{diag}\left[1, 1, \frac{d}{d_0}\right] \quad M(\theta, \phi) = \frac{d}{d_0} \sin^2 \theta + \left(\frac{d}{d_0}\right)^2 \cos^2 \theta$


Slide: 15


TATB single crystal thermoelasticity

Elastic constants (21 independent):

- Cannot be measured
- Few predictions from DFT, MD

EST 1943

